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Noise-induced transitions in spatially distributed and coupled pendulums
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We observe two classes of nonequilibrium noise-induced transitions in two-dimensional nearest-neighbor
coupled pendulums. One is characterized by the drastic change of the shape of the stationary probability
density and the other by the symmetry-breaking order parameter. The corresponding mechanisms are proposed.
The nature of each transition is discussed. The cooperative effect of the two phenomena is presented. The
mean-field results are consistent with the ones from the numerical calculd&i¥63-651X97)02211-3

PACS numbeps): 02.50.Ey, 05.70.Fh

[. INTRODUCTION NIT2 in [5]. The cooperation of the NIT1 and the NIT2 is
shown to result in the formation of a symmetry-breaking
One of the most actively studied nonequilibrium phenom-ordered phase with the configurations of double-peak SPD’s.
ena in systems coupled to fluctuating environment is thed’he NIT2 observed in this system shows a reentrant nature.
noise-induced transition that is characterized by the drastith this paper, we work in the Stratonovich interpretation of
change of the shape of the stationary probability densitﬁtochlastlc processes. The results in the Ito version are also
(SPD of the corresponding Fokker-Planck equatjah Be- ~ mentioned, supporting the arguments on the mechanisms for
ing analogous to the nonequilibrium phase transition in thdhe transitions in the Stratonovich processes. We present a
deterministic system that occurs when the potential changedyastic difference generated by the two versions of the sto-
qualitatively, the transition in the stochastic system has beefhastic processes in the macroscopic behavior of a spatially
claimed in[1] to be most naturally characterized by the ex-distributed and coupled system. _ _
trema of the corresponding SPD. At a critical noise intensity N the next section the dynamics of the single-site system
the number or the location of the extrema of the SPDiS derived. The single peak of the SPD at the deterministic
Changesy which represents the qua“tative Change of the maétable fixed pOint is Spllt into the ones at the deterministic
roscopic dynamics of the systefwe denote this class of stable fixed point and unstable fixed point above a critical
noise-induced transition as NIT.1In addition to low- noise intensity. We show the local instability around the de-
dimensional dynamica' SystemS’ a g|oba”y Coup|ed Systerfﬁrministic fixed pOint in the Stratonovich interpretaion, but
has been shown to exhibit the peak splitting of the SPDMot in the Ito interpretation, which makes a drastic difference
leading to the NIT1[2]. The other class of noise-induced in the macroscopic dynamics of the coupled system. The
transition is the one characterized by the symmetry-breakingystem is studied in the mean-field approximation in Sec. Ill.
order parameter, which resembles the conventional orderthe phase diagram is presented. The mean-field analysis pre-
disorder equilibrium phase transition in its natdteis class dicts the results from the numerical calculations. We present
will be denoted as NITR This phenomenon has been studiedthe numerical results in Sec. IV. A summary and discussion
recently in a nearest-neighbor coupled sysf@h not in a  follow in Sec. V.
form displaying the NIT1 of the single-site system.
The NIT1 and the NIT2 have been studied independently Il. ONE-SITE SYSTEM
with a lack of understanding the difference in their origins. ) , .
The cooperative effects of these phenomena have never beenWe describe an overdamped single pendulum subject to a
studied either, to our knowledge. In this paper we observdluctuating field and thermal noise, which is given [i8y7]
these two classes of noise-induced nonequilibrium transi- dé
tions and their cooperative phenomena in a spatially distrib- e ;
uted and coupled system and compare the corresponding dt [bton(D)]sing+rac(t), @
mechanisms. The single-site oscillator model with higher-
harmonic pinning force for zero intrinsic frequency has beerwhere the domain ofp is restricted to[0,27) imposing a
shown recently to exhibit both the NIT1 and the NIT4. periodic boundary condition ana and o, measure the in-
We work in the nearest-neighbor coupled pendulums whertensity of the multiplicative and additive noises, respectively.
the NIT1 and the NIT2 coexist. We clarify the ingredients In the deterministic cases(= o,=0) the system has a stable
leading to these phenomena in the coupled system: NIT1 iand an unstable fixed point at O andrespectively. Equation
shown to be based on the peak splitting of the SPD of eacfl) is also interpreted as an equation of motion describing
uncoupled element and its interaction with the attractive couvarious phenomena such as the synchronous oscillations in
pling, while the NIT2 is on the local instability of each un- the visual corteXx8], Cooper pair tunneling in the Josephson
coupled element and its interaction with the coupling. Thegunction [9], and the dynamics of sliding charge-density
latter supports a general argument on the mechanism for theaves[10]. %(t) and (t) are uncorrelated Gaussian white
noises characterized by
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"V = "N = —t! Il. MEAN-FIELD ANALYSIS
(n()n(t"))=(e(t)e(t’))=5(t—t"). OF THE COUPLED SYSTEM
Equation(1) possesses the reflection symmetry 27— ¢.
Intuitively, one expects an instability @ on average. It can
be seen by the following equation of motion of the first mo-
ment[5] d¢; K )
5p = [brom(h]sing— 5 X sin(di—¢))+oaei(t),
d¢ j,NN
)

A ® @
where the sum runs over the nearest neighbors of siie

where( ) denotes the average with respect to the probabilitywe assume that the noises at one site characterized by Eq.

density. The probability density &t=0 is assumed to be&  (2) are not correlated with otherk>0 (attractive coupliny

function. In Eq. (3) the higher order and the fluctuations is assumed throughout this paper.

around(¢) are neglected. One can read an instability of the The above stochastic differential equation in the Stra-

moment occurring aor®= o3=2b. Therefore, at short times, tonovich interpretation can be equivalently expressed as the

¢ on average drifts out of 0. Equatiqi) also shows an Fokker-Planck equation

interesting long-time behavior. Depending on the sign of

b+ on(t) whenoa=0, $=0 and can be either a stable P i1 — .y

Now we perform the mean-field analysis of the nearest-
neighbor coupled pendulum of EL), which is given by

( b sing; — smd),cos(;/),

fixed point or an unstable fixed point of E(L). Therefore, gt i 19<Z'>|

the pendulum fluctuates spending most of its time at Oand

This leads to the peak splitting of the SPDudt=2b, which +K(sind:)C(t) — (cosh:) S(t )p Lt }
can be read from Eq5) whenK =0. It should be noted that (sing)C(1)~ (cosp)S(t) | P({ i} 1)

the instability and the peak splitting in E({.) corresponding 52 2

to the short- and long: time behavior, respectively, are not A ) }
related to each other even though the corresponding critical +2i 8_2 2 szd)' P&itD

noise intensitites coincide. This can be seen also by a com- )
parison with the results from the Ito process, where the peak

splitting arises without the instability. In the Ito version, where C(t) and S(t) are defined as C(t)
without the drift term by noise in Eq3) there is no insta- = (1/d) Z; yncos#;(t) andS(t) = (1/d) Z; ynsing;(t), respec-
bility at any parameter values. However, the peak splittingtively. In the mean-field approximation the steady-state
occurs ato?=b. equation(5) can be written as a single variable

dP(¢) P(¢)[b sing+ (a?/2)sing cosp+K(sing)C— K(cosp)S]+J _
dé (0212) SiPd+ o212 !

(6)

whereld is the constant probability current that is imposed by 1 b+KC i

the boundary conditio®(¢+27)=P(¢). C andS are the + §+ —— In( 1+ co&;ﬁ)
steady-state values of the averages ofdgand sing;, re VO T o0y

spectively. With the translational invariance and the isotropy 2KS o

of the steady state of the syste,and S satisfy the self- — ——tan | — sing |, 8
consistent equations o0oA oA

om whereN,, is the normalization factor.
C=f do(cosp)P(¢), Solving Eq.(7) with the stationary probability density in
0 Eq. (8), we obtain the phase diagram of the system as in Fig.
, 1. The corresponding order parameters for the NIT1 and the
N : NIT2 are the number of peaks &f(¢) andS, respectively.
B fo de(sing)P(¢). ™ S, is the reflection conserving phase whose configurations
have SPD’s with single peak at 0. In this pha3e1 and
The stationary solution of the Fokker-Planck equation in theéS=0. The By phase represents the reflection symmetry-

mean-field approximation is given by breaking phase. The SPD’s of tlilg phase configurations
have a single peak located neither a0 nor at ¢=
P(¢)=Npnexd —U(¢)], producing nonzero value of the order parameieB, de-
notes the symmetry-breaking phase, where the SPD’s have

b+KC

1
“<¢>:(z‘—\m

double peaks located in a reflection symmetry breaking fash-
In ( 1+ +cos¢) ion. In both theBg andBy phaseLC+#1 andS#0. Sy is the

symmetry conserving phase with SPD’s having double peaks
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FIG. 2. Phase diagram fdr=1.0 ando,=0.03 obtained from
FIG. 1. Phase diagram far=1.0 ando,=0.03 from the mean- the numerical calculations of E¢4). Lines are a guide to the eye.
field approximation.
sf(K)<az<b2(K), the peak of the SPD is shifted from 0
located exactly ap=0 and . In the Sy phaseC#1 and  peing located neither at O nor atas theo= 2.0 line in Fig.
S=0. The detailed nature of each phase will be discussed in shows. As the instability indicates, each element tends be
the next section. The SPD’s corresponding to these fOUkicked out of O on average. The pendu|ums Showing the
phases have qualitatively same configurations as the ones ghort-time instability attract the neighbored elements through
Fig. 3. the coupling to gather around some nonzeérm the steady
The Ito interpretation of Eq(4) glves rise to the same state. Thus the instability of the single-site system at short
SPD as the one in Eq8), but with 5 replaced by 1. The times interacting with the attractive coupling results in the
numerical solutions of the coupled equatiof® and (8)  shift of the peak of the SPD té that is different from 0 or
show that the symmetry-breaking phase does not appear if, The location of this shifted peak is determined by the
the Ito version. The solutions of the self-consistent equationstrength of noise and coupling. The=b(K) line is the criti-
consist of theS; or the Sq phase configurations in the Ito cal line of the NIT1 representing the peak splitting of the
Interpretation. SPD of the coupled system. The NIT1 of Hg) originated
from the peak splitting of the SPD of each uncoupled ele-
IV. NUMERICAL RESULTS ment and is not related with the instability of the moment of
uncoupled element. This argument is consistent with the re-
sults in the Ito processes, where is the peak splitting of the
' SPD of each uncoupled element without the instability of the
moment leads the coupled system to the NIT1. When
ré¥i=(cosp;)+i(sing;), (9) b2(K)<02<s§(K)_, not only is the peak shifted as in tiég
phase due to the instability interacting with the coupling, but
whereNX N is the system size;2=(cosp)?+(sin)? the the peak of the SPD of the coupled system is split. This
subscripti denotes the site, ang is the average over time. results in the double peak shifted from 0 améh a localized
In the following simulations we have used the second-ordeform due to the attractive coupling, as the dashed line in Fig.
Runge-Kutta method with discrete time steps/df=0.01

Now we present the numerical results of Ed). We set
O= (1/N?) 3;sing; as an order parameter for the NIT2
which is given by

with random initial configurations. At each runxa o time . ——

steps per site have been used to compute averages. The s w0l - 6220

tem size is 2& 20. B
Figure 2 shows the phase diagram of NIT1 and NIT2 for

b=1.0 ando,=0.03. 0=5,(K) and o=s,(K) in Fig. 2
denote the critical lines of the NIT2 ane=b(k) the one of
the NIT1. We use the same notations as the ones in Sec. | €
to denote the four phases. o -
In Fig. 3 we present the SPD’s corresponding to $e : PR A
Bs, B4, andSy phases, respectively, for=1.0,K=1.0, and R T S
o,=0.03. The solid line in Fig. 3 shows that the pendulums R R A
are mostly alp=0 in the steady state when the noise is very - P
weak. Theo=s,(K) line that separates th&, phase from ¢
the S phase in Fig. 2 is independent of the coupling strength,

except when the coupling is very weak. It coincides wWith £ 3 plot of the SPD wheK = 1.0 ando,=0.03 for some
o®=0§, where the instability of the moment of the single- noise intensities. The pendulums for the=2.0 and 3.0 cases are
site system occurs. This and the mean-field result in Fig. localized af0,] with probability P, or at[,27] with probability
prove that the local instability of each uncoupled elementi—P,, depending on the initial conditions. This shows a bifurca-

causes the NIT2 in the coupled system. Whention in the steady states.

1F

polezz
B)
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15 , : , . , , . The Ito version of Eq(1) has no noise-dependent term in Eq.
- E:;g (3) and therefore generates no instability. However, the peak
e K=150 splitting of the SPD in the single-site system occurs. Numeri-
cal results present the NIT1 of E@), but not the NIT2 in
10 et eta T 7 the Ito version. With the results in the Stratonovich version,
this strongly reflects that when interacting with the coupling,
the peak splitting of the SPD in the single-site system results
o5l / \ | in the peak splitting of the SPD in the coupled system, while
' the local instability of the single-site system results in the
'\ symmetry-breaking phase transition.

0.0 ) O ey V. SUMMARY AND DISCUSSION

G In conclusion, we studied a nearest-neighbor coupled sys-

tem where the two classes of noise-induced transition phe-

FIG. 4. Forb=1.0 ando,=0.03, O's are plotted versugr Nomena coexist. We found various phases resulting from the
when K=1.0, 5.0, and 15.0. Lines are a guide to the eye. Weinteraction of the short-time dynamics and the steady-state
present only the positive values 6f neglecting the mirror image behavior of the single-site system with the coupling. The key
with respect to the axis. ingredients for the results in this paper are the local instabil-
ity induced by noise, peak splitting due to the existence of

3 shows. The pendulums in the configuration correspondinﬁ1e unstable fixed point, and diffusive coupling. The mean-

to the dashed line in Fig. 3 are localized @] or at[,27] eld results qualitatively_fit the nur_nerical ones. Comparing
; éhe results from the two interpretations of the stochastic pro-

configurations ofS. and B. phases so that the order param- C€SS€S .with each other, we clarified _the corresponding
9 5 sP b mechanisms for the NIT1 and the NIT2 in coupled system,

eterO is different from 0 representing a symmetry-breaking hich have been studied independently with a lack of under-

ordered phase. As the noise intensity increases, the disorde.

ing effect of the noise dominates the localization due to thestandmg the difference in their origins. The two interpreta-

coupling so that the pendulums get more broadly distributed'"S of stophastlc processes were therefo_re showr_l to gener-
The two peaks approach 0 and respectively, as noise in- ate a drastic difference in the macroscopic behavior of the

tensity increases until the symmetry-consen@gphase ap- c_oupled_ system, which _previously_has bgen studied in the

pears. The appearance of tBg phase is a cooperative be- single-site systerﬁllj or in the continuum limit of coupled

havior of the instability and the peak splitting of the single- system[l?]. The emstencg of the various phases from.the

site system and the coupling. Wher?>s2(K), the noise cooperative and competitive effects of the two transitions
. 2 y

intensity is strong enough to exhibit a disordering effect.) o> confirmed by the mean-field results and the numerical

; . . . results. The two results, however, show a relatively large
This dominates the attractive coupling. Therefore, the local- o . ' o . .
ization of the pendulum populatiopns %ue to the coupling iSquantltauve discrepancy. The discrepancy in the locations of

X the phase transition points becomes larger as the coupling
supressed so that the split peaks are located at Grafitie ets stronger. More detailed theoretical and numerical inves-
pendulums tend to be broadly distributed over the whol

range of ¢ due to the disordering effect of multiplicative I%ﬁ%’;qsei;e J??hgo;quéger study to understand the critical
noise as the dotted line in Fig. 3. The broken reflection symp '
metry is therefore restored resulting in the reentrant behavior
of the NIT2. The same transition pattern was observed for
any coupling strength as fa¢=1.0. This work was supported by the Ministry of Information

In Fig. 4 the order parametdD is plotted versusr for  and Communications, Korea. S.H.P. was supported in part
some fixed coupling strengths. As the coupling strength inby the Basic Science Research Institute Progt@mant No.
creases for a fixed noise intensity, the pendulums get morBSRI-96-2436, Korean Ministry of Education. We appreci-
localized, resulting in the increase of the order-parameteate discussions with Professor C. R. Doering, Professor P.
value. Hanggi, and Professor S. K. Han. We thank Professor C. Van

The Ito interpretation of stochastic processes exhibits aen Broeck for introducing Ref5] to us. We are grateful to
drastic difference in the macroscopic behavior of the systemDr. E. H. Lee for his support of this research.
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