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Noise-induced transitions in spatially distributed and coupled pendulums

Seon Hee Park,* Seunghwan Kim, and Chang Su Ryu
Research Department, Electronics and Telecommunications Research Institute, P.O. Box 106, Yusong-gu, Taejon, 305-600,

~Received 28 April 1997!

We observe two classes of nonequilibrium noise-induced transitions in two-dimensional nearest-neighbor
coupled pendulums. One is characterized by the drastic change of the shape of the stationary probability
density and the other by the symmetry-breaking order parameter. The corresponding mechanisms are proposed.
The nature of each transition is discussed. The cooperative effect of the two phenomena is presented. The
mean-field results are consistent with the ones from the numerical calculations.@S1063-651X~97!02211-3#

PACS number~s!: 02.50.Ey, 05.70.Fh
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I. INTRODUCTION

One of the most actively studied nonequilibrium pheno
ena in systems coupled to fluctuating environment is
noise-induced transition that is characterized by the dra
change of the shape of the stationary probability den
~SPD! of the corresponding Fokker-Planck equation@1#. Be-
ing analogous to the nonequilibrium phase transition in
deterministic system that occurs when the potential chan
qualitatively, the transition in the stochastic system has b
claimed in@1# to be most naturally characterized by the e
trema of the corresponding SPD. At a critical noise intens
the number or the location of the extrema of the S
changes, which represents the qualitative change of the m
roscopic dynamics of the system~we denote this class o
noise-induced transition as NIT1!. In addition to low-
dimensional dynamical systems, a globally coupled sys
has been shown to exhibit the peak splitting of the S
leading to the NIT1@2#. The other class of noise-induce
transition is the one characterized by the symmetry-break
order parameter, which resembles the conventional or
disorder equilibrium phase transition in its nature~this class
will be denoted as NIT2!. This phenomenon has been studi
recently in a nearest-neighbor coupled system@3#, not in a
form displaying the NIT1 of the single-site system.

The NIT1 and the NIT2 have been studied independe
with a lack of understanding the difference in their origin
The cooperative effects of these phenomena have never
studied either, to our knowledge. In this paper we obse
these two classes of noise-induced nonequilibrium tra
tions and their cooperative phenomena in a spatially dist
uted and coupled system and compare the correspon
mechanisms. The single-site oscillator model with high
harmonic pinning force for zero intrinsic frequency has be
shown recently to exhibit both the NIT1 and the NIT2@4#.
We work in the nearest-neighbor coupled pendulums wh
the NIT1 and the NIT2 coexist. We clarify the ingredien
leading to these phenomena in the coupled system: NIT
shown to be based on the peak splitting of the SPD of e
uncoupled element and its interaction with the attractive c
pling, while the NIT2 is on the local instability of each un
coupled element and its interaction with the coupling. T
latter supports a general argument on the mechanism fo

*Electronic address: shpark@logos.etri.re.kr
561063-651X/97/56~5!/5178~5!/$10.00
-
e
ic
y

e
es
n

-
y

c-

m

g
r-

ly
.
en
e
i-
-

ng
-
n

re

is
h
-

e
he

NIT2 in @5#. The cooperation of the NIT1 and the NIT2
shown to result in the formation of a symmetry-breaki
ordered phase with the configurations of double-peak SP
The NIT2 observed in this system shows a reentrant nat
In this paper, we work in the Stratonovich interpretation
stochastic processes. The results in the Ito version are
mentioned, supporting the arguments on the mechanism
the transitions in the Stratonovich processes. We prese
drastic difference generated by the two versions of the
chastic processes in the macroscopic behavior of a spat
distributed and coupled system.

In the next section the dynamics of the single-site syst
is derived. The single peak of the SPD at the determini
stable fixed point is split into the ones at the determinis
stable fixed point and unstable fixed point above a criti
noise intensity. We show the local instability around the d
terministic fixed point in the Stratonovich interpretaion, b
not in the Ito interpretation, which makes a drastic differen
in the macroscopic dynamics of the coupled system. T
system is studied in the mean-field approximation in Sec.
The phase diagram is presented. The mean-field analysis
dicts the results from the numerical calculations. We pres
the numerical results in Sec. IV. A summary and discuss
follow in Sec. V.

II. ONE-SITE SYSTEM

We describe an overdamped single pendulum subject
fluctuating field and thermal noise, which is given by@6,7#

df

dt
52@b1sh~ t !#sinf1sAe~ t !, ~1!

where the domain off is restricted to@0,2p! imposing a
periodic boundary condition ands and sA measure the in-
tensity of the multiplicative and additive noises, respective
In the deterministic case (s5sA50) the system has a stab
and an unstable fixed point at 0 andp, respectively. Equation
~1! is also interpreted as an equation of motion describ
various phenomena such as the synchronous oscillation
the visual cortex@8#, Cooper pair tunneling in the Josephso
junction @9#, and the dynamics of sliding charge-dens
waves@10#. h(t) and e(t) are uncorrelated Gaussian whi
noises characterized by

^h~ t !&5^e~ t !&50, ~2!
5178 © 1997 The American Physical Society
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^h~ t !h~ t8!&5^e~ t !e~ t8!&5d~ t2t8!.

Equation~1! possesses the reflection symmetryf→2p2f.
Intuitively, one expects an instability off on average. It can
be seen by the following equation of motion of the first m
ment @5#

K df

dt L 52S b2
s2

2 D ^f&, ~3!

where^ & denotes the average with respect to the probab
density. The probability density att50 is assumed to be ad
function. In Eq. ~3! the higher order and the fluctuation
around^f& are neglected. One can read an instability of
moment occurring ats25sS

2[2b. Therefore, at short times
f on average drifts out of 0. Equation~1! also shows an
interesting long-time behavior. Depending on the sign
b1sh(t) when sA50, f50 andp can be either a stabl
fixed point or an unstable fixed point of Eq.~1!. Therefore,
the pendulum fluctuates spending most of its time at 0 anp.
This leads to the peak splitting of the SPD ats252b, which
can be read from Eq.~5! whenK50. It should be noted tha
the instability and the peak splitting in Eq.~1! corresponding
to the short- and long: time behavior, respectively, are
related to each other even though the corresponding cri
noise intensitites coincide. This can be seen also by a c
parison with the results from the Ito process, where the p
splitting arises without the instability. In the Ito versio
without the drift term by noise in Eq.~3! there is no insta-
bility at any parameter values. However, the peak splitt
occurs ats25b.
by

p

th
-

y

e

f

t
al
-
k

g

III. MEAN-FIELD ANALYSIS
OF THE COUPLED SYSTEM

Now we perform the mean-field analysis of the neare
neighbor coupled pendulum of Eq.~1!, which is given by

df i

dt
52@b1sh i~ t !#sinf i2

K

d (
j ,NN

sin~f i2f j !1sAe i~ t !,

~4!

where the sum runs over thed nearest neighbors of sitei .
We assume that the noises at one site characterized by
~2! are not correlated with others.K.0 ~attractive coupling!
is assumed throughout this paper.

The above stochastic differential equation in the St
tonovich interpretation can be equivalently expressed as
Fokker-Planck equation

]P~$f i%,t !

]t
5(

i

]

]f i
F S b sinf i2

s2

2
sinf icosf i

1K~sinf i !C~ t !2~cosf i !S~ t ! D P~$f i%,t !G
1(

i

]2

]f i
2 F S sA

2

2
1

s2

2
sin2f i D P~$f i%,t !G ,

~5!

where C(t) and S(t) are defined as C(t)
5 (1/d) ( j ,NNcosfj(t) andS(t)5(1/d)( j ,NNsinfj(t), respec-
tively. In the mean-field approximation the steady-sta
equation~5! can be written as a single variable
dP~f!

df
1

P~f!@b sinf1~s2/2!sinf cosf1K~sinf!C2K~cosf!S#1J

~s2/2! sin2f1sA
2/2

50, ~6!
ig.
the

ons

ry-
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sh-

aks
whereJ is the constant probability current that is imposed
the boundary conditionP(f12p)5P(f). C andS are the
steady-state values of the averages of cosfj and sinfj , re-
spectively. With the translational invariance and the isotro
of the steady state of the system,C and S satisfy the self-
consistent equations

C5E
0

2p

df~cosf!P~f!,

S5E
0

2p

df~sinf!P~f!. ~7!

The stationary solution of the Fokker-Planck equation in
mean-field approximation is given by

P~f!5Nmexp@2U~f!#,

U~f!5S 1

2
2

b1KC

As41s2sA
2 D lnSA11

sA
2

s21cosf D
y

e

1S 1

2
1

b1KC

As41s2sA
2 D lnSA11

sA
2

s22cosf D
2

2KS

ssA
tan21S s

sA
sinf D , ~8!

whereNm is the normalization factor.
Solving Eq.~7! with the stationary probability density in

Eq. ~8!, we obtain the phase diagram of the system as in F
1. The corresponding order parameters for the NIT1 and
NIT2 are the number of peaks ofP(f) andS, respectively.
Ss is the reflection conserving phase whose configurati
have SPD’s with single peak at 0. In this phaseC51 and
S50. The Bs phase represents the reflection symmet
breaking phase. The SPD’s of theBs phase configurations
have a single peak located neither atf50 nor at f5p
producing nonzero value of the order parameterS. Bd de-
notes the symmetry-breaking phase, where the SPD’s h
double peaks located in a reflection symmetry breaking fa
ion. In both theBs andBd phasesCÞ1 andSÞ0. Sd is the
symmetry conserving phase with SPD’s having double pe
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located exactly atf50 andp. In the Sd phaseCÞ1 and
S50. The detailed nature of each phase will be discusse
the next section. The SPD’s corresponding to these f
phases have qualitatively same configurations as the on
Fig. 3.

The Ito interpretation of Eq.~4! gives rise to the same
SPD as the one in Eq.~8!, but with 1

2 replaced by 1. The
numerical solutions of the coupled equations~7! and ~8!
show that the symmetry-breaking phase does not appe
the Ito version. The solutions of the self-consistent equati
consist of theSs or the Sd phase configurations in the It
interpretation.

IV. NUMERICAL RESULTS

Now we present the numerical results of Eq.~4!. We set
O5 (1/N2) ( isinci as an order parameter for the NIT
which is given by

reic j5^cosf j&1 i ^sinf j&, ~9!

whereN3N is the system size,r 25^cosfi&
21^sinfi&

2, the
subscripti denotes the site, and̂& is the average over time
In the following simulations we have used the second-or
Runge-Kutta method with discrete time steps ofDt50.01
with random initial configurations. At each run, 33105 time
steps per site have been used to compute averages. The
tem size is 20320.

Figure 2 shows the phase diagram of NIT1 and NIT2
b51.0 andsA50.03. s5s1(K) and s5s2(K) in Fig. 2
denote the critical lines of the NIT2 ands5b(k) the one of
the NIT1. We use the same notations as the ones in Sec
to denote the four phases.

In Fig. 3 we present the SPD’s corresponding to theSs ,
Bs , Bd , andSd phases, respectively, forb51.0,K51.0, and
sA50.03. The solid line in Fig. 3 shows that the pendulu
are mostly atf50 in the steady state when the noise is ve
weak. Thes5s1(K) line that separates theBs phase from
theSs phase in Fig. 2 is independent of the coupling streng
except when the coupling is very weak. It coincides w
s25sS

2 , where the instability of the moment of the singl
site system occurs. This and the mean-field result in Fig
prove that the local instability of each uncoupled elem
causes the NIT2 in the coupled system. Wh

FIG. 1. Phase diagram forb51.0 andsA50.03 from the mean-
field approximation.
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2(K),s2,b2(K), the peak of the SPD is shifted from 0

being located neither at 0 nor atp as thes52.0 line in Fig.
2 shows. As the instability indicates, each element tends
kicked out of 0 on average. The pendulums showing t
short-time instability attract the neighbored elements throu
the coupling to gather around some nonzerof in the steady
state. Thus the instability of the single-site system at sh
times interacting with the attractive coupling results in th
shift of the peak of the SPD tof that is different from 0 or
p. The location of this shifted peak is determined by th
strength of noise and coupling. Thes5b(K) line is the criti-
cal line of the NIT1 representing the peak splitting of th
SPD of the coupled system. The NIT1 of Eq.~4! originated
from the peak splitting of the SPD of each uncoupled e
ment and is not related with the instability of the moment
uncoupled element. This argument is consistent with the
sults in the Ito processes, where is the peak splitting of
SPD of each uncoupled element without the instability of t
moment leads the coupled system to the NIT1. Wh
b2(K),s2,s2

2(K), not only is the peak shifted as in theBs

phase due to the instability interacting with the coupling, b
the peak of the SPD of the coupled system is split. Th
results in the double peak shifted from 0 andp in a localized
form due to the attractive coupling, as the dashed line in F

FIG. 2. Phase diagram forb51.0 andsA50.03 obtained from
the numerical calculations of Eq.~4!. Lines are a guide to the eye

FIG. 3. Plot of the SPD whenK51.0 andsA50.03 for some
noise intensities. The pendulums for thes52.0 and 3.0 cases are
localized at@0,p# with probability P0 or at @p,2p# with probability
12P0 , depending on the initial conditions. This shows a bifurc
tion in the steady states.
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3 shows. The pendulums in the configuration correspond
to the dashed line in Fig. 3 are localized at@0,p# or at @p,2p#
even though they are more broadly distributed than in
configurations ofSs andBs phases so that the order param
eterO is different from 0 representing a symmetry-breaki
ordered phase. As the noise intensity increases, the diso
ing effect of the noise dominates the localization due to
coupling so that the pendulums get more broadly distribut
The two peaks approach 0 andp, respectively, as noise in
tensity increases until the symmetry-conservingSd phase ap-
pears. The appearance of theBd phase is a cooperative be
havior of the instability and the peak splitting of the singl
site system and the coupling. Whens2.s2

2(K), the noise
intensity is strong enough to exhibit a disordering effe
This dominates the attractive coupling. Therefore, the loc
ization of the pendulum populations due to the coupling
supressed so that the split peaks are located at 0 andp. The
pendulums tend to be broadly distributed over the wh
range off due to the disordering effect of multiplicativ
noise as the dotted line in Fig. 3. The broken reflection sy
metry is therefore restored resulting in the reentrant beha
of the NIT2. The same transition pattern was observed
any coupling strength as forK51.0.

In Fig. 4 the order parameterO is plotted versuss for
some fixed coupling strengths. As the coupling strength
creases for a fixed noise intensity, the pendulums get m
localized, resulting in the increase of the order-parame
value.

The Ito interpretation of stochastic processes exhibit
drastic difference in the macroscopic behavior of the syst

FIG. 4. For b51.0 andsA50.03, O’s are plotted versuss
when K51.0, 5.0, and 15.0. Lines are a guide to the eye. W
present only the positive values ofO neglecting the mirror image
with respect to thex axis.
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The Ito version of Eq.~1! has no noise-dependent term in E
~3! and therefore generates no instability. However, the p
splitting of the SPD in the single-site system occurs. Nume
cal results present the NIT1 of Eq.~4!, but not the NIT2 in
the Ito version. With the results in the Stratonovich versio
this strongly reflects that when interacting with the couplin
the peak splitting of the SPD in the single-site system res
in the peak splitting of the SPD in the coupled system, wh
the local instability of the single-site system results in t
symmetry-breaking phase transition.

V. SUMMARY AND DISCUSSION

In conclusion, we studied a nearest-neighbor coupled s
tem where the two classes of noise-induced transition p
nomena coexist. We found various phases resulting from
interaction of the short-time dynamics and the steady-s
behavior of the single-site system with the coupling. The k
ingredients for the results in this paper are the local insta
ity induced by noise, peak splitting due to the existence
the unstable fixed point, and diffusive coupling. The mea
field results qualitatively fit the numerical ones. Compari
the results from the two interpretations of the stochastic p
cesses with each other, we clarified the correspond
mechanisms for the NIT1 and the NIT2 in coupled syste
which have been studied independently with a lack of und
standing the difference in their origins. The two interpre
tions of stochastic processes were therefore shown to ge
ate a drastic difference in the macroscopic behavior of
coupled system, which previously has been studied in
single-site system@11# or in the continuum limit of coupled
system@12#. The existence of the various phases from t
cooperative and competitive effects of the two transitio
was confirmed by the mean-field results and the numer
results. The two results, however, show a relatively la
quantitative discrepancy. The discrepancy in the location
the phase transition points becomes larger as the coup
gets stronger. More detailed theoretical and numerical inv
tigations are left for further study to understand the critic
phenomena of the model.
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